IDENTIFICATION OF THE ABSENT SPECTRAL GAPS IN A CLASS OF GENERALIZED KRONIG－PENNEY HAMILTONIANS

HIROAKI NIIKUNI

（DEPARTMENT OF MATHEMATICS，TOKYO METROPOLITAN UNIVERSITY）

In this talk we study the spectral gaps of the one－dimensional Schrödinger operators with particular periodic point interactions．We fix $\kappa \in(0, \pi) \cup(\pi, 2 \pi)$ ．Let

$$
\Gamma_{1}=2 \pi \mathbf{Z}, \quad \Gamma_{2}=\{\kappa\}+2 \pi \mathbf{Z}, \quad \Gamma=\Gamma_{1} \cup \Gamma_{2}
$$

For $\theta_{1}, \theta_{2} \in[-\pi / 2, \pi / 2)$ and $A_{1}, A_{2} \in S O(2) \backslash\{ \pm I\}$ ，we define the operator $H=H\left(\theta_{1}, \theta_{2}, A_{1}, A_{2}\right)$ in $L^{2}(\mathbf{R})$ as follows．

$$
(H y)(x)=-\frac{d^{2}}{d x^{2}} y(x), \quad x \in \mathbf{R} \backslash \Gamma
$$

$$
\operatorname{Dom}(H)=\left\{y \in H^{2}(\mathbf{R} \backslash \Gamma) \left\lvert\, \quad\binom{y(x+0)}{y^{\prime}(x+0)}=e^{i \theta_{j}} A_{j}\binom{y(x-0)}{y^{\prime}(x-0)}\right., \quad x \in \Gamma_{j}, \quad j=1,2\right\} .
$$

Since $A_{j} \in S O(2) \backslash\{ \pm I\}$ ，we can write the elements of A_{j} as

$$
A_{j}=\left(\begin{array}{cc}
\cos \alpha_{j} & -\sin \alpha_{j} \\
\sin \alpha_{j} & \cos \alpha_{j}
\end{array}\right), \quad \alpha_{j} \in(-\pi, 0) \cup(0, \pi)
$$

The operator H is self－adjoint．Since the set $\sigma\left(H\left(\theta_{1}, \theta_{2}, A_{1}, A_{2}\right)\right)$ is independent of θ_{1} and θ_{2} ， we hereafter discuss only the case where

$$
\theta_{1}=\theta_{2}=0
$$

Next，we define the spectral gaps of H ．To this end，we consider the equation

$$
\left\{\begin{array}{l}
-y^{\prime \prime}(x, \lambda)=\lambda y(x, \lambda), \quad x \in \mathbf{R} \backslash \Gamma \tag{1}\\
\binom{y(x+0, \lambda)}{y^{\prime}(x+0, \lambda)}=A_{j}\binom{y(x-0, \lambda)}{y^{\prime}(x-0, \lambda)} \text { for } x \in \Gamma_{j}, \quad j=1,2
\end{array}\right.
$$

where λ is a real parameter．This equation has two solutions $y_{1}(x, \lambda)$ and $y_{2}(x, \lambda)$ which are uniquely determined by the initial conditions

$$
y_{1}(+0, \lambda)=1, \quad y_{1}^{\prime}(+0, \lambda)=0
$$

and

$$
y_{2}(+0, \lambda)=0, \quad y_{2}^{\prime}(+0, \lambda)=1,
$$

respectively．We introduce the discriminant $D(\lambda)$ of the equation（1）：

$$
\begin{equation*}
D(\lambda)=y_{1}(2 \pi+0, \lambda)+y_{2}^{\prime}(2 \pi+0, \lambda) . \tag{2}
\end{equation*}
$$

Let λ_{j} be the $(j+1)$ st zero of $D(\cdot)^{2}-4$ ．Then we have

$$
\lambda_{0}<\lambda_{1} \leq \lambda_{2}<\lambda_{3} \leq \lambda_{4}<\cdots<\lambda_{2 k-1} \leq \lambda_{2 k}<\cdots \rightarrow \infty
$$

We define

$$
B_{j}=\left[\lambda_{2 j-2}, \lambda_{2 j-1}\right], \quad G_{j}=\left(\lambda_{2 j-1}, \lambda_{2 j}\right)
$$

Then we derive

$$
\sigma(H)=\bigcup_{j=1}^{\infty} B_{j}
$$

The open interval G_{j} is called the j－th gap of the spectrum of H ，the closed interval B_{j} the j－th band．The aim of this study is to determine whether or not the j－th gap is absent for a given $j \in \mathbf{N}$ ．Throughout this talk we use the notations

$$
a \equiv b \text { if } a-b \in \pi \mathbf{Z}, \quad a \not \equiv b \text { if } a-b \notin \pi \mathbf{Z}
$$

for $a, b \in \mathbf{R}$ ．For convenience we adopt the following classification of the parameters α_{1} and α_{2} ．
（I）$\alpha_{1}-\alpha_{2} \not \equiv 0, \quad \alpha_{1}+\alpha_{2} \not \equiv 0$.
（II）$\alpha_{1}+\alpha_{2} \equiv 0$ ．
（III）$\alpha_{1}-\alpha_{2} \equiv 0, \quad \alpha_{1}+\alpha_{2} \not \equiv 0$.
Our main results are the following three theorems．
Theorem 1．If the condition（I）holds，then

$$
G_{j} \neq \emptyset \quad \text { for all } j \in \mathbf{N} .
$$

Theorem 2．Suppose that（II）is valid．
（1）Let $\kappa / \pi \notin \mathbf{Q}$ ．Then we have

$$
\left\{j \in \mathbf{N} \mid \quad G_{j}=\emptyset\right\}=\{3\} .
$$

（2）If $\kappa / 2 \pi=q / p,(p, q) \in \mathbf{N}^{2}, \operatorname{gcd}(p, q)=1$ ，then

$$
\left\{j \in \mathbf{N} \mid \quad G_{j}=\emptyset\right\}=\{3\} \cup\{p k+1 \mid k \in \mathbf{N}\} .
$$

Theorem 3．Assume that（III）is valid．We put $\eta_{j}=\pi^{2} j^{2} / 4(\pi-\kappa)^{2}$ for $j \in \mathbf{N}$ ．Then it holds that

$$
\bigcup_{k=1}^{\infty} B_{k} \cap B_{k+1}=\left\{\eta_{j} \left\lvert\,-2\left(\sqrt{\eta_{j}}+\frac{1}{\sqrt{\eta_{j}}}\right)^{-1} \cot \kappa \sqrt{\eta_{j}}=\tan \alpha_{1}\right. \text { and } j \in \mathbf{N}\right\}
$$

References

［1］Chernoff，R．P．，and Hughes，J．R．，A new class of point interactions in one dimension，J．Funct． Anal．，111（1993），pp．97－117．
［2］Gan，S．and Zhang，M．，Resonance pockets of Hill＇s equations with two－step potentials，SIAM J． Math．Anal．，32（2000），No．3，pp．651－664．
［3］Gesztesy，F．，Holden，H．，and，Kirsch，W．，On energy gaps in a new type of analytically solvable model in quantum mechanics，J．Math．Anal．Appl． 222 （1988），pp．9－29．
［4］Gesztesy，F．，and Kirsch，W．，One－dimensional Schrödinger operators with interactions singular on a disctete set，J．Reine Angew．Math．， 362 （1985），pp．28－50．
［5］Hughes，R．J．，Generalized Kronig－Penney Hamiltonians，J．Math．Anal．Appl．， 222 （1998），no．1， pp．151－166．
［6］Kronig，R．，and Penney，W．，Quantum mechanics in crystal lattices，Proc．Royal．Soc．London， 130 （1931），pp．499－513．
［7］Šeba，P．，The generalized point interaction in one dimension，Czech J．Phys．B 36 （1986），pp． 667－673．
［8］Yoshitomi，K．，Spectral gaps of the one－dimensional Schrödinger operators with periodic point in－ teractions，to appear in Hokkaido Math．J．

