大日本図書 新基礎数学問題集 6章§1 BASIC 詳しい解答

p.69.6章 § 1. 点と直線 BASIC

351.
$$OA = \sqrt{3^2 + 0^2} = \sqrt{9} = 3$$
, $OB = \sqrt{0^2 + (-4)^2} = \sqrt{16} = 4$, $AB = \sqrt{(0-3)^2 + (-4-0)^2} = \sqrt{25} = 5$.

- 352. (1) 求める点を P(x,0) とすると AP=BP より $\sqrt{(x-3)^2+(0-1)^2}=\sqrt{(x-2)^+(0-5)^2}$. よって $\sqrt{x^2-6x+9+1} = \sqrt{x^2-4x+4+25}$. Of $x^2-6x+10 = x^2-4x+29, -2x = 19, x = -\frac{19}{2}$. よって $P\left(-\frac{19}{2},0\right)$.
 - (2) 求める点を $\mathrm{Q}(0,y)$ とすると $\mathrm{AQ=BQ}$ より $\sqrt{(0-3)^2+(y-1)^2}=\sqrt{(0-2)^+(y-5)^2}$. よって $\sqrt{9+y^2-2y+1} = \sqrt{4+y^2-10y+25}$. つまり $y^2-2y+10=y^2-10y+29, 8y=19, y=\frac{19}{8}$. よって Q $\left(0, \frac{19}{8}\right)$.
 - (3) 求める点を $\mathrm{R}(t,t)$ とすると $\mathrm{AR}=\mathrm{BR}$ より $\sqrt{(t-3)^2+(t-1)^2}=\sqrt{(t-2)^+(t-5)^2}$. よって $6t = 19, t = \frac{19}{6}$. Lot $R(\frac{19}{6}, \frac{19}{6})$.
- 353. P(0,y) とすると $\sqrt{3}$ AP=BP より $\sqrt{3}\sqrt{(0-1)^2+(y-2)^2}=\sqrt{(0-4)^+(y-4)^2}$. よって $\sqrt{3(1+y^2-4y+4)} = \sqrt{16+y^2-8y+16}. \ \ \mbox{つまり} \ 3y^2-12y+15 = y^2-8y+32, 2y^2-4y-17 = 0,$ $y = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 2 \cdot (-17)}}{2 \cdot 2} = \frac{4 \pm 2\sqrt{38}}{4} = \frac{2 \pm \sqrt{38}}{2}. \text{ for } P\left(0, \frac{2 \pm \sqrt{38}}{2}\right).$
- 354. (1) 求める点を P(x,y) とすると $x=\frac{2\times5+3\times(-5)}{3+2}=-1, y=\frac{2\times7+3\times(-3)}{3+2}=1.$ P(-1,1). (2) 求める点を Q(x,y) とすると $x=\frac{3\times5+2\times(-5)}{2+3}=1, y=\frac{3\times7+2\times(-3)}{2+3}=3.$ Q(1,3).
- 355. (1) 重心を G(x,y) とすると $x=\frac{0+2+0}{3}=\frac{2}{3}, y=\frac{0+0+3}{3}=1.$ $G\left(\frac{2}{3},1\right)$.
 - (2) 重心を G(x,y) とすると $x=\frac{2+0+4}{3}=2, y=\frac{0+3+3}{3}=2.$ G(2,2).
- 356. C(x,y) とすると $\frac{2+5+x}{3}=1$, $\frac{-2+4+y}{3}=3$. よって x=-4,y=7. C(-4,7).
- 357. (1) 傾き 4 より y=4x+b とおくと点 (-1,2) を通るから $2=4\times(-1)+b$. よって b=6. y=4x+6.
 - (2) x 軸と平行より y=b. 点 (4,3) を通るから 3=b. よって y=3.
 - (3) y 軸と平行より x=c. 点 (4,3) を通るから 4=c. よって x=4.
- 358. (1) 直線の傾きは $\frac{3-2}{-2-1}=-\frac{1}{3}$. 点 (1,2) を通るから $y-2=-\frac{1}{3}(x-1)$. よって $y=-\frac{1}{3}x+\frac{7}{3}$
 - (2) 2 点の x 座標が等しいので x=c. 点 $(-\sqrt{2},4)$ を通るから $-\sqrt{2}=c$. よって $x=-\sqrt{2}$.
- 359. (1) $y = -\frac{1}{2}x + 2$. (2) $y = -\frac{5}{3}$. (3) $x = \frac{3}{2}$. (3) $x = \frac{3}{2}$. 360. (1) 直線 x + 2y + 3 = 0 の傾きは $y = -\frac{1}{2}x \frac{3}{2}$ より $-\frac{1}{2}$ だから求める直線の傾きも同じ.
- よって求める直線の方程式を $y=-rac{1}{2}x+b$ とおくと点 (1,3) を通るから $3=-rac{1}{2}+b$. よって $b=rac{7}{2}$ 求める直線の方程式は $y=-rac{1}{2}x+rac{7}{2}\Leftrightarrow x+2y-7=0.$
 - (2) 直線 2x+3y+7=0 の傾きは $y=-rac{2}{3}x-rac{7}{3}$ より $-rac{2}{3}$ だから求める直線の傾きを m とすると $-rac{2}{3}m=-1$ より $m=\frac{3}{2}$. よって求める直線の方程式を $y=\frac{3}{2}x+b$ とおくと点 (-3,0) を通るから $0=\frac{3}{2}\cdot(-3)+b$. よって $b=\frac{9}{2}$.求める直線の方程式は $y=\frac{3}{2}x+\frac{9}{2}\Leftrightarrow 3x-2y+9=0.$

- $361.\ 2$ 点を結ぶ線分の傾きは $\frac{3-1}{1-5}=-\frac{1}{2}$ だから求める直線の傾きを m とすると $-\frac{1}{2}m=-1$ より m=2. よって求める直線の方程式を y=2x+b とおくと、この直線は 2 点の中点 $\Big(\frac{5+1}{2},\frac{1+3}{2}\Big)$ 、すなわち (3,2) を通るから $2=2\cdot 3+b$. よって b=-4. 求める直線の方程式は $y=2x-4\Leftrightarrow 2x-y-4=0$.
- p.70 CHECK
- 362. (1) AB= $\sqrt{(5-2)^2 + (5-0)^2} = \sqrt{34}$. BC= $\sqrt{(7-5)^2 + (3-5)^2} = \sqrt{8} = 2\sqrt{2}$. AC= $\sqrt{(7-2)^2 + (3-0)^2} = \sqrt{34}$. よって AB=CA の二等辺三角形.
 - (2) AB= $\sqrt{\{2-(-2)\}^2+(-1-1)^2}=\sqrt{20}=2\sqrt{5}$. BC= $\sqrt{(\sqrt{3}-2)^2+\{2\sqrt{3}-(-1)\}^2}=\sqrt{20}=2\sqrt{5}$. AC= $\sqrt{\{\sqrt{3}-(-2)\}^2+(2\sqrt{3}-1)^2}=\sqrt{20}=2\sqrt{5}$. よって正三角形.
 - (3) $AB = \sqrt{(-3-0)^2 + (2-1)^2} = \sqrt{10}$. $BC = \sqrt{\{-4-(-3)\}^2 + (-1-2)^2} = \sqrt{10}$. $AC = \sqrt{(-4-0)^2 + (-1-1)^2} = \sqrt{20} = 2\sqrt{5}$. よって $\angle B$ を直角とする (AC を斜辺とする) 直角二等辺三角形.
- 363. 求める点を P(x,y) とすると OP=AP=BP より $\sqrt{x^2+y^2}=\sqrt{(x-1)^2+(y-2)^2}=\sqrt{\{x-(-1)\}^2+(y-1)^2}$. よって $x^2+y^2=x^2+y^2-2x-4y+5=x^2+y^2+2x-2y+2$ より $2x+4y=5\cdots$ ①, $2x-2y=-2\cdots$ ②. ① -② より $6y=7,y=\frac{7}{6}$. ①より $x=\frac{1}{6}$. よって $P\left(\frac{1}{6},\frac{7}{6}\right)$.
- 364. P(x,0) とすると. $AP = \sqrt{2}BP$ より $\sqrt{(x-3)^2 + (0-4)^2} = \sqrt{2}\sqrt{(x-1)^2 + (0-2)^2}$. よって $x^2 6x + 25 = 2(x^2 2x + 5)$. $x^2 + 2x 15 = (x+5)(x-3) = 0$. よって x = -5, 3. P(-5,0) または (3,0).
- 365. AB を 1:2 の比に内分する点を $\operatorname{P}(x,y)$ とすると $x=\frac{2\cdot 1+1\cdot 3}{1+2}=\frac{5}{3}, y=\frac{2\cdot 1+1\cdot 4}{1+2}=2$. よって $\operatorname{P}\left(\frac{5}{3},2\right)$. BA を 1:2 の比に内分する点を $\operatorname{Q}(x,y)$ とすると $x=\frac{2\cdot 3+1\cdot 1}{1+2}=\frac{7}{3}, y=\frac{2\cdot 4+1\cdot 1}{1+2}=3$. よって $\operatorname{Q}\left(\frac{7}{3},3\right)$. 366. $\operatorname{B}(x_1,y_1)$, $\operatorname{C}(x_2,y_2)$ とすると $\operatorname{M}\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$ だから $\frac{x_1+x_2}{2}=1,\frac{y_1+y_2}{2}=2$, すなわち
- 366. $\mathrm{B}(x_1,y_1),\,\mathrm{C}(x_2,y_2)$ とすると $\mathrm{M}\Big(\frac{x_1+x_2}{2},\,\frac{y_1+y_2}{2}\Big)$ だから $\frac{x_1+x_2}{2}=1,\,\frac{y_1+y_2}{2}=2,\,$ すなわち $x_1+x_2=2,y_1+y_2=4\cdots$ ①. 重心を $\mathrm{G}(x,y)$ とすると $x=\frac{4+x_1+x_2}{3},y=\frac{2+y_2+y_2}{3}$ だから ①より $x=\frac{4+2}{3}=2,y=\frac{2+4}{3}=2.$ よって $\mathrm{G}(2,2).$
- 367. 求める直線の傾きは $\tan 30^\circ = \frac{1}{\sqrt{3}}$ だから,その方程式を $y = \frac{1}{\sqrt{3}}x + b$ とおくと,点 (-2,0) を通るから $0 = \frac{1}{\sqrt{3}} \cdot (-2) + b$. よって $b = \frac{2}{\sqrt{3}}$. 従って $y = \frac{1}{\sqrt{3}}x + \frac{2}{\sqrt{3}} \Leftrightarrow x \sqrt{3}y + 2 = 0$.
- 368. 直線の傾きは $\frac{3-1}{2-6}=-\frac{1}{2}$. よって求める方程式は $y=-\frac{1}{2}x+b$. 点 (6,1) を通るから $1=-\frac{1}{2}\cdot 6+b$. よって b=4. 求める方程式は $y=-\frac{1}{2}x+4\Leftrightarrow x+2y-8=0$.
- $369.\ 2$ 直線 $2x-y+3=0\cdots$ ①, $x+y=0\cdots$ ② の交点は ① + ② より 3x+3=0, x=-1, y=1 だから (-1,1). 直線 $x-y+3=0\Leftrightarrow y=x+3$ の傾きは 1. この直線と平行な直線の方程式は y=x+b. (-1,1) を通ればよいから 1=-1+b, b=2. よって $y=x+2\Leftrightarrow x-y+2=0$.

直線 x-y+3=0 と垂直な直線の傾きは -1 だからその方程式は y=-x+b. (-1,1) を通ればよいから 1=-(-1)+b, b=0. よって $y=-x\Leftrightarrow x+y=0$.

370. 2 直線の傾きと切片が等しいから $3x+4y-2=0\Leftrightarrow y=-\frac{3}{4}x+\frac{1}{2}, ax+3y+c=0\Leftrightarrow y=-\frac{a}{3}x-\frac{c}{3}$ より $-\frac{3}{4}=-\frac{a}{3},\frac{1}{2}=-\frac{c}{3}.$ よって $a=\frac{9}{4}, c=-\frac{3}{2}.$

371. 条件より OA=OB=AB. よって $\sqrt{2^2+(2\sqrt{3})^2}=\sqrt{x^2+y^2}=\sqrt{(x-2)^2+(y-2\sqrt{3})^2}\Leftrightarrow 16=x^2+y^2=x^2+y^2-4x-4\sqrt{3}y+16\Leftrightarrow 16=x^2+y^2\cdots$ ①, $-4x-4\sqrt{3}y+16=0\cdots$ ②. ②より $x=-\sqrt{3}y+4\cdots$ ③. ①に代入して $16=(-\sqrt{3}y+4)^2+y^2\Leftrightarrow 4y^2-8\sqrt{3}y=4y(y-2\sqrt{3})=0.$ $y=0,2\sqrt{3}.$

3より y=0 ගද්ද $x=4,y=2\sqrt{3}$ ගද්ද x=-2. よって $(x,y)=(4,0),(-2,2\sqrt{3})$.