Converted from "Complex Numbers in Mathcad" created by Mathcad Staff

Working with Complex Numbers

A complex number is an expression of the form

$$x+y\cdot 1i$$

where x and y are real numbers, and

$$1i = \sqrt{-1}$$

For example, the following is a complex number:

$$2 + 13i$$

$$2 + 13i = 2 - 13i$$

$$\overline{2+13i} = 2-13i$$
 $\overline{2+13i} \cdot (2+13i) = 173$

Real and Imaginary Parts

$$a := -\frac{1}{2} + \frac{\sqrt{3}}{2} \text{ 1i} \qquad a^2 = -0.5 - 0.866i \qquad a^3 = 1 + 1.11i \cdot 10^{-16} \qquad a^3 \xrightarrow{simplify} 1$$

$$\text{Re}(a) = -0.5 \quad \text{Im}(a) = 0.866 \qquad \text{arg}(a) = 2.094 \quad \text{arg}(a) \xrightarrow{simplify} \frac{2 \cdot \pi}{3} \qquad |a| = 1$$

$$a^2 = -0.5 - 0.866i$$

$$a^3 = 1 + 1.11i \cdot 10^{-16}$$

$$a^3 \xrightarrow{simplify} 1$$

$$\operatorname{Re}(a) = -0.5$$

$$Im(a) = 0.866$$

$$\arg(a) = 2.094$$

$$arg(a) \xrightarrow{simplify} \frac{2 \cdot a}{a}$$

$$|a|=1$$

Representing Complex Numbers as Points in the Plane

arg(a)

If you square a complex number z on the unit circle, the magnitude of is 1, since

$$|z^2| = |z| \cdot |z| = 1 \cdot 1 = 1$$

The argument of z^2 is twice the argument of z, since

$$arg(z^2) = arg(z) \cdot arg(z) = 2 \cdot arg(z)$$

For example,

$$\left(e^{\frac{2\cdot\pi}{3}\cdot 1\mathrm{i}}\right)^2 \xrightarrow{expand} -\frac{1}{2} - \frac{\sqrt{3}\cdot 1\mathrm{i}}{2}$$

Roots of Unity

In the complex numbers, the equation

$$z^n = 1$$

has n distinct solutions, called the nth roots of unity. These are defined as follows. Let

$$\alpha = e^{\frac{2 \cdot \pi}{n} \cdot 1i} = \cos\left(\frac{2 \cdot \pi}{n}\right) + \sin\left(\frac{2 \cdot \pi}{n}\right) \cdot 1i$$

 α corresponds to the point on the unit circle in the complex plane whose angle is $2\pi/n$.

Note that α is a solution to the equation

$$x^n = 1$$

since

$$\alpha^{n} = \left(e^{\frac{2 \cdot \pi}{n} \cdot 1i}\right)^{n} = e^{2 \cdot \pi \cdot 1i} = \cos(2 \cdot \pi) + \sin(2 \cdot \pi) \cdot 1i = 1$$

The nth roots of unity are the numbers

$$\alpha, \alpha^2 \dots \alpha^n = 1$$

For example, if n = 3, the cube roots of unity are the numbers

$$\alpha := e^{\frac{2 \cdot \pi}{3} \cdot 1i} \rightarrow -\frac{1}{2} + \frac{\sqrt{3} \cdot 1i}{2}$$

$$\alpha^2 \xrightarrow{expand} -\frac{1}{2} - \frac{\sqrt{3} \cdot 1i}{2}$$

$$\alpha^3 \xrightarrow{expand} 1$$

Since raising α to any power k multiplies the argument of α by k, the powers of α are evenly spaced around the unit circle. The following graph shows the case n=3.

Note that each of these numbers is a solution to the equation

$$x^3 = 1$$