平成 28 年度 岐阜工業高等専門学校シラバス	
教科目名 応用数学 III	担当教員 中谷 淳
学年学科 4年 機械工学科	後期 必修 1 単位(学修)

学習・教育目標 (D-1)100%

授業の目標と期待される効果:

成績評価の方法:

直接測定可能な量(実数)と異なるが、多く

・中間試験 100 点と期末試験 100 点,合計 200 点の総得点率を 10 段 階で評価する. なお、試験には教室外学修とアクティブラーニング で実施した内容も含まれる.

JABEE 基準1(1):(c)

の工学的分野に応用される複素関数の微分積分 を理解し計算できることを目標とする. 具体的 には以下の項目を目標とする. 微分積分や線形 台数を含む数学は基礎知識として関連があり, 微分積分などの応用事例としての理解が深まる ことも期待できる.

- ・試験期間中の不正行為が発覚した学生については、該当期間の試験 は0点として扱う(追試験等も実施しない).
- ①複素数の定義や性質による計算
- 達成度評価の基準:
- ②複素平面を利用した視覚的な理解と計算
- 教科書の練習問題と同レベルの問題、および教室外学修とアクティ ブラーニングの内容を試験で出題し、6割以上の正答レベルまで達し ていること. なお、下記項目①~⑥の成績評価への重みは全て均等で ある.
- ③正則とコーシー・リーマン方程式の理解
- ① 基礎的な定義や性質に従って、複素数を含む計算問題を6割以上解 くことができる.
- ④ コーシーの積分公式による複素積分計算
- ②複素平面の概念を理解し、図形や極形式など関連問題を視覚的に 6 割以上解くことができる.
- ⑤ 留数定理による複素積分の計算
- ③ 複素関数の微分と正則、その条件であるコーシー・リーマン方程式
- ⑥ 複素積分の応用としての実積分の計算
- に関する問題を6割以上解くことができる. ④ コーシーの定理や積分公式を利用した複素積分に関する計算問題
- を6割以上解くことができる. ⑤ ローラン展開と留数定理の関係を理解し、留数定理による複素積分
- に関する計算問題を6割以上解くことができる.
- ⑥ 複素積分の応用としての実積分に関する計算問題を 6割以上解くこ とができる.

授業の進め方とアドバイス:

- ・授業では下記に示す教科書(第2章)を踏まえて進める.また,必要に応じて別途資料を提示する.
- ・ 教室外学修やアクティブラーニングの精神に基づき、自学自習、予習復習を重視すること、
- ・ 数学と工学との関係性を理解するよう務めること.
- ・ 必要に応じて授業の予定を変更することも有り得る

教科書および参考書:

第15回:

試験返却と講評

上野健爾(監修), 工学系数学教材研究会(著),「工学系数学テキストシリーズ 応用数学」, 森北出版 (教科書) (参考書)

授業の概要と予定:	教室外学修	ALのレベル
第 1 回: 複素数(複素数の定義, 実部, 虚部, 四則演算, 共役複素数)	(演習)複素数と共役複素数	
第 2 回: 複素数(絶対値)と複素平面(図形)	(演習)複素平面	
第 3 回: 複素数と複素平面(極形式,ド・モアブルの定理,n乗根)	(演習)極形式と n 乗根	
第 4 回: 複素関数(複素変数の関数,z平面とw平面の図形,極限,微分の定義)	(演習)複素関数	
第 5 回: 複素関数の微分(正則,導関数,コーシー・リーマンの方程式)	(演習)正則	
第 6 回: 複素関数の微分(調和関数,正則関数)	(演習)調和関数,正則関数	
第 7 回: 複素関数の微分(正則関数,逆関数)	(演習)正則関数,逆関数	
第 8 回: 中間試験		
第 9 回: 複素関数の積分(複素積分の定義,不定積分,コーシーの定理)	(演習)コーシーの定理	
第10回: 複素関数の積分(コーシーの積分公式(表示))	(演習)コーシーの積分公式	
第11回: 複素関数の積分(コーシーの積分公式(表示)の拡張)	(演習)コーシーの積分公式	
第12回: 複素関数の積分(テイラー展開とローラン展開)	(演習)テイラー展開	
第13回: 複素関数の積分 (解く移転の分類と極・留数, 留数定理による積分)	(演習)極・留数	
第14回: 複素関数の応用	(演習)複素関数の応用	С
期末試験		
Me		

(評価) ルーブリック

達成度評価項目	理想的な到達	標準的な到達	未到達	
	レベルの目安	レベルの目安	レベルの目安	
	(優)	(良)	(不可)	
①	基礎的な定義や性質に従っ	基礎的な定義や性質に従っ	基礎的な定義や性質に従っ	
	て,複素数を含む計算問題を	て,複素数を含む計算問題を	て,複素数を含む計算問題を	
	8割以上解くことができる.	6割以上解くことができる.	できる. 6 割以上解くことができな	
			V).	
2	複素平面の概念を理解し,図	複素平面の概念を理解し,図	複素平面の概念を理解し,図	
	形や極形式など関連問題を	形や極形式など関連問題を	形や極形式など関連問題を	
	視覚的に8割以上解くことが	視覚的に6割以上解くことが	視覚的に6割以上解くことが	
	できる.	できる.	できない.	
3	複素関数の微分と正則, その	複素関数の微分と正則, その	複素関数の微分と正則, その	
	条件であるコーシー・リーマ	条件であるコーシー・リーマ	条件であるコーシー・リーマ	
	ン方程式に関する問題を8割	ン方程式に関する問題を6割	ン方程式に関する問題を6割	
	以上解くことができる.	以上解くことができる.	以上解くことができない.	
4	コーシーの定理や積分公式	コーシーの定理や積分公式	コーシーの定理や積分公式	
	を利用した複素積分に関す	を利用した複素積分に関す	を利用した複素積分に関す	
	る計算問題を8割以上解くこ	る計算問題を6割以上解くこ	る計算問題を6割以上解くこ	
	とができる.	とができる.	とができない.	
(5)	ローラン展開と留数定理の	ローラン展開と留数定理の	ローラン展開と留数定理の	
	関係を理解し、留数定理によ	関係を理解し、留数定理によ	関係を理解し、留数定理によ	
	る複素積分に関する計算問	る複素積分に関する計算問	る複素積分に関する計算問	
	題を8割以上解くことができ	題を6割以上解くことができ	題を6割以上解くことができ	
	る	る.	ない.	
6	複素積分の応用としての実	複素積分の応用としての実	複素積分の応用としての実	
	積分に関する計算問題を8割	積分に関する計算問題を6割	積分に関する計算問題を6割	
	以上解くことができる.	以上解くことができる.	以上解くことができない.	