平成 29 年度	岐阜工業高等専門学校シラノ	ベス				
教科目名	耐震工学	担当教員	渡辺尚彦			
学年学科	5年 環境都市工学科		前期	選択	1 単位(選択)	
学習・教育目標 (D-3 安全系) 100% JABEE 基準1 (1):(d)						

授業の目標と期待される効果:

本科目では、構造・材料関連科目の知識を基にして、耐震工学について学び、地震に対してその影響や安全性について修得する。また、練習問題を行なうことで、工学的な問題に対して適用できる力を身につける。具体的には以下の項目を目標とする。

- ①地球の構造を理解し、地震発生のメカニズムや地震の種類について説明できる。
- ②地震波の種類, 増幅・減衰特性について説明できる。
- ③1自由度系振動問題について,モデル 化-運動方程式の立式-微分方程式の 解の観点から説明できる。
- ④多自由度系について, モーダルアナリシスができる。
- ⑤耐震設計に関する基本的な考え方につ いて説明できる。

成績評価の方法:

総得点 240 点=期末試験 100 点+中間試験 100 点+課題提出 40 点とし,総得点率(%)によって成績評価を行なう。なお,成績評価に教室外学修の内容は含まれる。

達成度評価の基準:

技術士の一次試験問題,国家Ⅱ種採用試験,教科書等の演習問題と同レベルの問題を試験で出題し,6割以上の正答レベルまで達していること。なお成績評価への重みは,各項目の成績評価への重みは均等である。総合して6割以上正答のレベルまで達していること。

- ① 地震発生のメカニズムや地震の種類について、ほぼ正確(7割以上)に説明できる。
- ② 地震波の種類, 増幅・減衰特性について, ほぼ正確(7割 以上)に説明できる。
- ③ 1自由度系・多自由度系振動について、モデル化ー運動方程式の立式ー微分方程式の解の導出の観点から6割以上説明できる。
- ④ 耐震設計に関する基本的な考え方について 6 割以上説明できる。

授業の進め方とアドバイス:授業は、各項目毎に教科書および板書を中心とした説明を行うため、各自学習ノートを 充実させること。物理学、構造力学、土質工学の基礎が必要なので、関連科目を復習しておくこと。

教科書および参考書:耐震工学入門[第2版](平井一男・水田洋司著,森北出版,2009.3.10 第2版第6刷)を教科書として用いる。適宜参考資料を用いる。

授業の構	既要と予定:前期	教室外学修	ALのレベル
第 1回	回:耐震工学で学ぶ内容の説明	地学および地震に関する学習(プレートテクトニクス,地震規模の	С
第 2回	回:地震の原因,地震の強さ	表現、将来予測手法)	С
第 3回	回:地震活動,地震波,地震による被害	地盤と地震波, 地震災害に関する 学習	С
第 4回	回:振動現象	構造物のモデル化に関する演習	С
第 5 🛭	回:1自由度系の非減衰自由振動	1 自由度系自由振動に関する計	С
第 6回	回:1自由度系の減衰自由振動	算演習(運動方程式および解法)	В
第 7回	回:1自由度系の定常振動1		С
第 8回	回:中間試験		
第 9回	回:1自由度系の定常振動2		С
第10回	回:不規則外力を受ける1自由度系振動	1 自由度系強制振動に関する計 算演習	С
第11回	回:多自由度系自由振動		С
第12回	回:多自由度系強制振動	多自由度系振動に関する計算演 習	С
第13回	回:数值積分法	数値積分に関する計算演習	С
第14回	回:耐震設計	耐震設計法に関する学習	С
期末試験			L
第15回	可:フォローアップ(期末試験の解答の解説など)		

評価(ルーブリック)

達成度	理想的な到達	標準的な到達	未到達				
評価項目	レベルの目安	レベルの目安	レベルの目安				
	(優)	(良)	(不可)				
	地震発生のメカニズムや	地震発生のメカニズムや地	地震発生のメカニズムや地				
1	地震の種類の観点から、	震の種類について、ほぼ正確	震の種類について、説明する				
1)	実地震について説明する	(7 割以上)に説明することで	ことできない。				
	ことができる。	きる。					
	地震波の種類、増幅・減	地震波の種類、増幅・減衰特	地震波の種類、増幅・減衰特				
2	衰特性から実地盤の特性	性について、ほぼ正確(7割	性について、説明することが				
	を説明できる。	以上)に説明できる。	できない。				
	1 自由度系・多自由度系	1 自由度系・多自由度系振動	1 自由度系・多自由度系振動				
	振動について導出された	について,モデル化-運動方	について, モデル化-運動方				
3	微分方程式の解からその	程式の立式ー微分方程式の	程式の立式-微分方程式の				
	特性を説明できる。	解の導出の観点から 6 割以	解の導出ができない。				
		上説明できる。					
	耐震設計の観点から適切	耐震設計に関する基本的な	耐震設計に関する基本的な				
4	な構造形式について説明	考え方について 6 割以上説	考え方について説明できな				
	することができる。	明できる。	V _o				