	岐阜工業高等専門学校										
\$1111. F	機構学		当教員 山田	3実	11.65))/ /L				
学年学科	3年 機械工学科		通年		必修	2	単位				
	目標 (D-2)100% と期待される効果:		成績評価の力	 5法:							
	物理学で学んできた,物で 知識を基に,機械の機構		前期中間試驗期期末試験1								
	的事項を修得することを		達成度評価の								
る.			等で出題し,								
	おける運動を解析できる	1 =n=L)ができる	
できる	による機械の運動を理解	し, 政司	②リンクに③摩擦伝動							さる .明でき,諸	書
	動機構および歯車装置に	よる機械	を計算で		. О Ш —	3K E	1000	/X //X * ~ X	 23 7 C 100	,,, c C , hb	-
	と理解し、設計できる	LIV I b			ム機構	によ	る機械の	の運動を	を説明で	き、諸量を	·計
	けおよびカム機構による 翼し,設計できる	機械の連	算できる								
	<u> </u>	 ├製図 I で与	学習した機構,	物理で気	全習した	物体	の運動	に関係	するとこ	ろを十分復	[習
	と. 遅刻した場合は授業を										
教科書および	び参考書:機構学,森田均	匀,実教出	版を教科書と	する.							
授業の概要の	<u></u> と予定:前期										
第 1回:	機構学とは										
第 2回:	機素・対偶・連鎖,自由	h度									
第 3回:	機構の運動と瞬間中心										
· 第 4回:	 3瞬間中心の定理										
第 5回:	機構における速度(移送	关法 分解	·								
	機構における速度(連接 機構における速度(連接										
	機構における速度(建設 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・										
	中間のまとめ 	→									
第 9回:	リンク機構(1)4節回] 転連鎖、 	グフスホフの)定埋 							
第10回:	リンク機構(2)てこク 	ラシク機	構, スライタ 	ブクランタ	ク連鎖						
第11回:	リンク機構(3)往復ス	スライダ機	構,揺動スラ	ライダク	ランク核	幾構					
第12回:	リンク機構(4)両スラ	ライダクラ	ンク連鎖,ス	スライダー	てこ連鎖	肖 					
第13回:	リンク機構(5)直線週	重動機構									
第14回:	レゴを使った演習										
第15回:	 前期の復習										

期末試験

第16回:フォローアップ

授業の概要と予定:後期 第17回:摩擦伝動装置 第18回:だ円車 第19回:円すい車,摩擦車の伝達 第20回:歯車(1)用語の説明 第21回:歯車(2)サイクロイド歯形、インボリュート歯形 第22回:歯車(3)かみ合い率 第23回:歯車(4)すべり率 第24回:中間のまとめ 第25回:歯車(5)転位歯車,歯車の種類,歯車列 第26回:カム機構(1)カム装置とカムの種類 第27回:カム機構(2)カム線図とカムの輪郭曲線 第28回:巻き掛け伝動機構(1)平ベルトによる伝動、ベルトの長さと巻き掛け角 第29回:巻き掛け伝動機構(2)ベルトの張力と伝動動力 第30回: レゴを使った演習 第31回:後期の復習 _._._. 期末試験

第32回:フォローアップ