平成 26 年度 岐阜工業高等専門学校シラバス							
教科目名	弾塑性力学	担当教員	加藤浩三				
学年学科	2年電子システム工学専攻	前期		選択	2 単位		
教育・学習目標 (D-2:力学系)100%		JABI	EE 基準 1 ((1):(d)			

授業の目標と期待される効果:

ものづくりにおいて金属材料の利用 は欠くことができない.また,あらゆる 金属は弾塑性挙動を示す.本講義では金 属の弾塑性挙動を連続体力学の枠組み において理解することを目的としてい る.

①ものづくりにおける弾塑性力学の位置付けと役割を理解し説明することができる.

- ②応力,あるいはひずみの用語を用いた力学的現象の表現を理解できる.
- ③テンソル解析の基礎を理解し簡単な 演算ができる.
- ④関連の英文を適切な和文に翻訳する ことができる.

成績評価の方法:

期末試験合計 100 点を総得点とする.

なお,教室外学修の課題自体は,そのまま総得点率には反映されることはないが,課題は定期試験の出題範囲であるので,定期試験を介して総得点率に反映される.

達成度評価の基準:

以下の4項目の重み付けは均等である.各達成度項目についての出題について 6割以上の正解を合格とする.

- ①ものづくりにおける弾塑性力学の位置付けと役割を理解し説明することができること.
- ②応力, あるいはひずみの用語を用いた力学的現象の表現を理解できること.
- ③テンソル解析の基礎を理解し簡単な演算ができること.
- ④関連の英文を適切な和文に翻訳することができること.

授業の進め方とアドバイス:

- ①専門共通科目「連続体力学」と関連の深い教科目であるので、修得済の受講者は教科書を持参するのがよい.
- ②テンソル解析は弾塑性力学分野に留まらず適用範囲は広い.本科の出身学科に関わらず各自の特別研究テーマとの対応を念頭に置いて授業に臨み、有機的な学習の機会とすること.

教科書および参考書:

教科書:プリント配布

参考書:久田俊明著,「非線形有限要素法のためのテンソル解析の基礎」, 丸善

冨田佳宏著,「連続体力学の基礎」, 養賢堂

冨田佳宏著,「弾塑性力学の基礎と応用 数値シミュレーションへの導入」,森北出版

富田佳宏著,「弾塑性力学の基礎と応用 数値シミュレーションへの導入」,森北出版						
授業の概要	と予定:前期	教室外学修				
第1回:	シラバス解説, 弾塑性力学の位置付け, 塑性加工とは 弾塑性力学の	引張試験に関する英文献(全6頁)の和訳:前半3				
	用途,引張試験,公称応力,公称ひずみ,応力―ひずみ線図,弾性,	頁				
	塑性,降伏点,降伏応力,加工硬化,垂直応力とせん断応力					
第2回:	真応力、真ひずみ、真ひずみの特長	引張試験に関する英文献(全6頁)の和訳:後半3				
	3行3列の応力成分の作図	頁				
	$\mathbf{x}_1 - \mathbf{x}_2 - \mathbf{x}_3$ 座標系					
	2階のテンソルとしての応力					
	総和規約,クロネッカーデルタ,交替記号					
	正規直交基底 正規直交基底の内積と外積					
第3回:	ベクトルの内積と外積	$x_1 - x_2 - x_3$ 座標系で表示された式を				
	ベクトルのテンソル積の定義	x-y-z座標系に変えてみる				
第4回:	テンソルのドット積,テンソルの転置,対称テンソル	反対称テンソルを例示し、その特徴を検証する.				
	反対称テンソルとその特徴2つ, テンソルの逆					
第5回:	直交テンソルその例,テンソルの跡	直交テンソルの例を各自で示し、確認する.				
	総和規約に関わる演習問題,テンソルのスカラ積二つ					
第6回:	ベクトルの発散・回転・勾配	ベクトルの発散・回転・勾配とテンソルの階				
	テンソルの発散・スカラの勾配	数との関係を検証する.				
第7回:	発散・回転・勾配がテンソルと階数の関係に及ぼす影響	関連の英文和訳				
		Nonliner continuum mechanics for finite element				
		analysis から 2.2 Vector and tensor algebra				
第8回:	テンソルの加算分解	同上 2.4 Tensor analysis				
第9回:	転置と逆についての主要な二つの定理	同上 3.2 Motion				
	テンソルの転置かつ逆の表現					
第10回:		同上 3.3 Material and spatial descriptions				
	minute, for tal. In					
第11回:		同上 3.4 deformation gradient				
第12回:	変位、微小変形ひずみ、体積一定則	同上 3.5 Strain				
第13回:	弾性の構成式,塑性の構成式	同上 3.6 Polar decomposition				
第14回:	変形勾配、テンソルの極分解、ストレッチテンソル、コーシーグリー	同上 4.2 Cauchy stress tensor				
	ンの変形テンソル					
第15回:	有限ひずみの定義,弾塑性力学と固有値	同上 4.3 Equilibrium				
	期末試験	_				
第16回:	フォローアップ (期末試験の解答の解説など)	試験で間違えた問題を解く.				