平成 27 年月	度 岐阜工業高等専門学校:	/ラバス				
教科目名	ロボット工学	担当教員	北川秀夫			
学年学科	5年 電子制御工学科	通年		必修	2 単位 (学修)	

学習・教育目標 (D-4) 100%

授業の目標と期待される効果:

運動学,動力学を中心として,ロボット制御技術の基礎を修得する。具体的には以下の項目を目標とする。

- ① マニピュレータの位置・姿勢表現法の理解
- ② マニピュレータの順・逆運動学、ヤコビ行列の理解
- ③ マニピュレータの動力学の理解
- ④ マニピュレータの位置・力制御方法の理解
- ⑤ 移動ロボットの機構・特徴・制御方法の理 解

成績評価の方法:

前期:期末試験100点+課題50点

後期:中間試験 100 点+期末試験 100 点+課題 50 点

JABEE 基準1 (1):(d)

学年:前後期の重みを等しくして合計し得点率(%)で評価する。

なお, 成績評価に教室外学修の内容は含まれる。

達成度評価の基準:

教科書,参考書の練習問題と同レベルの問題に対し,6割以上の正答レベルまで達していること。具体的な評価基準を以下に示す。なお,成績評価への重みは,①15%,②35%,③15%,④20%,⑤15%とする。

- ① マニピュレータの位置・姿勢表現法が6割程度理解できること
- ②マニピュレータの順・逆運動学、ヤコビ行列、静力学が6割程度 理解できること
- ③ マニピュレータの動力学が6割程度理解できること
- ④ マニピュレータの位置・力制御方法が6割程度理解できること
- ⑤ 移動ロボットの運動学・制御方法が6割程度理解できること

授業の進め方とアドバイス:

教科書:ロボット制御基礎論(吉川恒夫, コロナ社)

参考書:高知能移動ロボティクス(中野栄二他,講談社サイエンティフィク)

ロボットシステム入門(松日楽信人他,オーム社),ロボット制御入門(川村貞夫,オーム社)

教科書および参考書:電気機器工学(前田勉・コロナ社)電験三種徹底解説テキスト機械(電験三種教育研究会編・ 実教出版)基礎からの交流理論(小亀英己・電気学会・オーム社)

授業の概要と予定:前期	教室外学修	ALのレベル
第 1回:ロボット概論	ロボットの調査	
第 2回:マニピュレータの運動学(二自由度マニピュレータ)		С
第 3回:マニピュレータの運動学(二自由度マニピュレータ)	運動学の概要の理解および演習	С
第 4回:マニピュレータの運動学(二自由度マニピュレータ)		С
第 5回:マニピュレータの運動学(位置と姿勢の記述)	回転行列の理解および 演習	
第 6回:マニピュレータの運動学(同次変換)	同次変換行列の理解お よび演習	С
第 7回:マニピュレータの運動学(リンクパラメータ)	リンクパラメータの理 解および演習	
第 8回:マニピュレータの運動学(リンクパラメータ)		С
第 9回:マニピュレータの運動学(順運動学問題)	多自由度マニピュレー タの順運動学の理解お	
第10回:マニピュレータの運動学(順運動学問題)	よび演習	С
第11回:マニピュレータの運動学(逆運動学問題)	逆運動学の理解および 演習	
第12回:マニピュレータの運動学(リンク速度間の関係)	リンク速度間関係式の 理解および演習	С
第13回:マニピュレータの運動学(ヤコビ行列と特異姿勢)	ヤコビ行列の算出方法と特異姿勢の概念の理	
第14回:マニピュレータの運動学(ヤコビ行列と特異姿勢)	解および演習 解および演習	С
第15回:マニピュレータの運動学(総まとめ)	運動学の総まとめ	
期末試験	_	
第16回:フォローアップ(期末試験の解答の解説など)	_	

授業の概要と予定:後期	教室外学修	ALのレベル
第17回:マニピュレータの動力学 (ラグランジュ法)	ラグランジュ法を用いた 逆動力学計算の理解およ	
第18回:マニピュレータの動力学(ラグランジュ法)	び演習	С
第19回:マニピュレータの動力学 (ニュートン・オイラー法)	ニュートン・オイラー法	
第20回:マニピュレータの動力学 (ニュートン・オイラー法)	を用いた逆動力学計算の 理解および演習	
第21回:マニピュレータの動力学(ニュートン・オイラー法)		С
第22回:マニピュレータの位置制御(目標軌道生成)	軌道生成法の理解および	
第23回:マニピュレータの位置制御(目標軌道生成)	演習	С
第24回:中間試験	_	
第25回:マニピュレータの位置制御(線形フィードバック制御)	マニピュレータの位置制 御方法の理解および演習	
第26回:マニピュレータの力制御(インピーダンス制御)	インピーダンス制御の理 解および演習	
第27回:マニピュレータの力制御(ハイブリッド制御)	ハイブリッド制御の理解 および演習	
第28回:車輪型移動ロボットの力学と制御(運動学)	車輪型移動ロボットの運 動学の理解および演習	
第29回:歩行ロボットの力学と制御(基礎理論と静的安定性)		
第30回:歩行ロボットの力学と制御(静歩行制御)	歩行ロボットの機構・制 御方法の理解および演習	
第31回:歩行ロボットの力学と制御(動歩行の基礎理論)		
期末試験	_	
第32回:フォローアップ(期末試験の解答の解説など)	_	

評価(ルーブリック)

達成度	理想的な到達	標準的な到達	未到達			
評価項	レベルの目安	レベルの目安	レベルの目安			
目	(優)	(良)	(不可)			
1)	マニピュレータの位置・姿勢表現法が(8割以上)理解できること。	マニピュレータの位置・姿勢表現法が(6割以上)理解できること。	マニピュレータの位置・姿勢 表現法が理解できない。			
2	マニピュレータの順・逆運動学,ヤコビ行列,静力学が(8割以上)理解できること。	マニピュレータの順・逆運動 学,ヤコビ行列,静力学が(6 割以上)理解できること。	マニピュレータの順・逆運動学、ヤコビ行列、静力学が理解できない。			
3	マニピュレータの動力学 が(8 割以上)理解できるこ と。	マニピュレータの動力学が(6割以上)理解できること。	マニピュレータの動力学が理 解できない。			
4	マニピュレータの位置・力 制御方法が(8 割以上)理解 できること。	マニピュレータの位置・力制 御方法が(6 割以上)理解できること。	マニピュレータの位置・力制 御方法が理解できない。			
(5)	移動ロボットの運動学・制 御方法が(8 割以上)理解で きること。	移動ロボットの運動学・制御 方法が(6 割以上)理解できる こと。	移動ロボットの運動学・制御 方法が理解できない。			