平成 27 年度 岐阜工業高等専門学校シラバス						
教科目名	ディジタル回路I	担当教員	白木英二			
学年学科	2年 電気情報工学科		後期	必修	1 単位	

学習・教育目標 (D-2 情報・論理系)100%

授業の目標と期待される効果:

本授業では、コンピュータのハードウェアシステムの基礎となる論理回路の知識と、これを設計する能力を習得する。具体的には以下の項目を目標とする。

- ①2進数,16進数,2進演算の理解
- ②論理関数の理解
- ③組み合わせ論理回路の理解
- ④フリップフロップの理解
- ⑤順序回路の解析法の理解
- ⑥順序回路の設計法の理解

成績評価の方法:

中間試験(100点),期末試験(100点)、課題提出(50点) とし、その総得点率(%)により評価する。

達成度評価の基準:

試験結果の正答率が6割以上に達していること。試験内容は、教技術士の一次試験問題、教科書や講義中で出題した問題と同レベルとする。成績評価への重みは、①~⑤を各20%とする。

- ①2進数、16進数に関する演算を解くことができる
- ②論理関数の演算を解くことができる
- ③組み合わせ回路の設計と簡単化を行うことができる
- ④順序回路の解析を行うことができる
- ⑤順序回路を設計することができる

授業の進め方とアドバイス:

板書およびプレゼンテーション(PPT)ソフトにより授業を行うので、ノートを取ること。また、授業中に行う演習問題と同等の問題を試験で出題するので、同等のレベルまでは各自で理解度の確認をすることが重要となる。

教科書および参考書:

ディジタル電子回路—集積回路化時代の— (藤井 信生, 昭晃堂, 1987,4) を教科書として用いる。また、必要に応じてプリントを配布する。

授業の概要と予定:前期	ALのレベル		
第 1回:2進数と16進数	С		
第 2回:2進数の演算			
第 3回:2進演算の正解・不正解	C		
第 4回:基本論理回路			
第 5回:ブール代数と論理関数			
第 6回:論理関数の簡単化	C		
第 7回:加算回路の設計	C		
第 8回:中間試験			
第 9回:組み合わせ論理回路の解析と実現			
第10回:組み合わせ論理回路のシミュレータ実装	C		
第11回:フリップフロップの原理			
第12回:フリップフロップの種類と動作	С		
第13回:順序回路の設計方法			
第14回:順序回路の設計と解析	С		
第15回:シミュレータによる順序回路の実装	В		
期末試験			
第16回:フォローアップ(期末試験の解答の解説など)			

評価(ルーブリック)

達成度	理想的な到達	標準的な到達	未到達				
評価項目	レベルの目安	レベルの目安	レベルの目安				
	(優)	(良)	(不可)				
	2進数, 16進数に関す	2進数,16進数に関する問	2進数、16進数に関する問				
1	る問題をほぼ正確(8 割以	題をほぼ正確(6 割以上)に解	題を解くことができない。				
	上)に解くことができる。	くことができる。					
	論理関数に関する問題を	論理関数に関する問題をほ	論理関数に関する問題を解				
	ほぼ正確(8 割以上)に解	ぼ正確(6 割以上)に解くこと	くことができない。				
	くことができる	ができる					
	組み合わせ回路の設計と	組み合わせ回路の設計と簡	組み合わせ回路の設計と簡				
	簡単化に関する問題をほ	単化に関する問題をほぼ正	単化に関する問題をほぼ正				
3	ぼ正確(8 割以上)に解く	確(6 割以上)に解くことがで	確に行なうことができない。				
	ことができる。	きる。					
	順序回路の解析に関する	順序回路の解析に関する問	順序回路の解析に関する問				
4	問題をほぼ正確(8 割以	題をほぼ正確(6 割以上)に解	題をほぼ正確に行なうこと				
	上)に解くことができる。	くことができる。	ができない。				
	順序回路を設計に関する	順序回路を設計に関する問	順序回路を設計に関する問				
5	問題をほぼ正確(8 割以	題をほぼ正確(6 割以上)に解	題をほぼ正確に行なうこと				
	上)に解くことができる	くことができる	ができない。				