平成 28 年度	を 岐阜工業高等専門学校シ	ラバス		
教科目名	ロボット工学Ⅱ	担当教員 北川秀夫		
学年学科	5年 電子制御工学科	後期	選択 1 単位(学修)	
	目標 │ (D-4) 100%		基準1(1):(d)	
授業の目標 運動学, 御技術の基 項目を目標 ① マニピュ ② マニピュ	と期待される効果: 動力学を中心として, ロボ 礎を修得する。具体的には	成績評価の方法: 中間試験 100 点+期まの得点率(%)で評価なお、成績評価に教室を放度評価の基準: の理解 法の理	末試験 100 点+課題 20 点	準を以下に示す。 5%とする。 こと 理解できること
講義形式です 必要とする(教科書およう 教科書:ロン 参考書:高	ので、各自復習しておくこと び参考書: ボット制御基礎論(吉川恒月 知能移動ロボティクス(中里		フィク)	工学の基礎知識を
授業の概要	と予定:後期		教室外学修	ALのレベル
第 1回:	マニピュレータの動力学(ラ	ラグランジュ法)	ラグランジュ法を用いた	
第 2回:	マニピュレータの動力学(ラ	 ラグランジュ法)	· 逆動力学計算の理解およ び演習	С
第 3回:マニピュレータの動力学(ニュートン・オイラー法)		ニュートン・オイラー法 を用いた逆動力学計算の 理解および演習		
第 4回:マニピュレータの動力学(ニュートン・オイラー法)				
第 5回:マニピュレータの動力学(ニュートン・オイラー法)				С
第 6回:マニピュレータの位置制御(目標軌道生成)		軌道生成法の理解および		
第 7回:マニピュレータの位置制御(目標軌道生成)			演習 	С
第 8回:	中間試験		_	
第 9回:マニピュレータの位置制御(線形フィードバック制御)			マニピュレータの位置制 御方法の理解および演習	
第10回:マニピュレータの力制御(インピーダンス制御)			インピーダンス制御の理 解および演習	
第11回:マニピュレータの力制御(ハイブリッド制御)			ハイブリッド制御の理解 および演習	
		古松田は針っぱ この生	i	
第12回:	車輪型移動ロボットの力学と	と制御(運動学) 	車輪型移動ロボットの運 動学の理解および演習	

第14回:歩行ロボットの力学と制御(静歩行制御・動歩行の基礎) 期末試験

第15回:ロボット工学Ⅱのまとめ

御方法の理解および演習

評価(ルーブリック)

達成度	理想的な到達	標準的な到達	未到達
評価項	レベルの目安	レベルの目安	レベルの目安
目	(優)	(良)	(不可)
	マニピュレータの動力学	マニピュレータの動力学が(6	マニピュレータの動力学が理
1	が(8 割以上)理解できるこ	割以上)理解できること。	解できない。
	と。		
	マニピュレータの位置・力	マニピュレータの位置・力制	マニピュレータの位置・力制
2	制御方法が(8 割以上)理解	御方法が(6 割以上)理解でき	御方法が理解できない。
	できること。	ること。	
	移動ロボットの運動学・制	移動ロボットの運動学・制御	移動ロボットの運動学・制御
3	御方法が(8 割以上)理解で	方法が(6 割以上)理解できる	方法が理解できない。
	きること。	こと。	