平成 28 年度 岐阜工業高等専門学校シラバス					
教科目名	環境生態工学	担当教員	和田 清		
学年学科	専攻科1年次	前期	選択	2 単位(学修)	

学習・教育目標 (D-2 社会技術系)100% JABEE 基準1 (1):(d)

授業の目標と期待される効果:

地球規模や地域レベルの環境問題が深刻となり、環境の中の生物と人間の役割・位置を知ることの重要性が高まっている。 た、人間の自然への働きかけの歴史や、本た、人間の自然を十分に理解できな見かい。 を忘れては自然を十分に理解できな見が、本を通して、とりわけ森林・水・土などのシステム(水圏・地圏・大気圏・生物圏)と社会活動の関わり方を理解し、新たな自然共生型社会システムを構築するための技術(社会技術)を視野に入れた環境管理システムの基本的な考え方を修得する。

- ①環境容量の基本的な理解
- ②物質のマクロ的な循環の理解
- ③自然生態系のしくみ (原則) の理解
- ④生物間伝達方法等の理解
- ⑤社会活動と水環境の関わりの理解
- ⑥社会活動と大気環境の関わりの理解
- ⑦社会活動と土壌環境の関わりの理解
- (8)環境修復技術の理解
- ⑨都市環境の物質循環と環境浄化の理解
- ⑩環境リスクと環境管理システムの基本に 関する理解

成績評価の方法:

総得点数 250 点=定期試験 100 点+平常試験 100 点+課題提出 50 点、 総得点率 (%) によって成績評価を行う. なお,成績評価に教室外学 修の内容は含まれる.

達成度評価の基準: 国家公務員採用一般職試験(大卒程度・土木), 技術士の一次試験問題,教科書等の演習問題と同等レベルの問題を試 験等で出題し、以下のレベルまで達していること.①から⑥は成績評 価への重みは均等である.総合して6割以上正解のレベルにまで達し ていること.

教科書の演習問題,技術士1次試験などと同レベルの問題を試験で 出題し,6割以上の正答レベルまで達していること.成績評価への重み は均等である.

- ①環境容量を理解し、ロジスティックモデルなどについて、ほぼ正確 に (6 割程度) 説明できる
- ②マクロ的な物質循環(C,N,Pなど)について、ほぼ正確に(6割程度) 図示して説明できる
- ③自然生態系の基本原則のいくつかについて、ほぼ正確に(6割程度) 説明できる
- ④複数の生物種,種間の競争・寄生・共生モデル,化学コミュニケーションなどについて,ほぼ正確に(6割程度)説明できる
- ⑤水環境(栄養塩 N,P など)の生物浄化機能について,ほぼ正確に(6 割程度)説明できる
- ⑥大気環境(CO₂, N₂ など)の生物浄化機能について,ほぼ正確に(6割程度)説明できる
- ⑦土壌環境(コンポスト化など)の生物浄化機能について、ほぼ正確 に(6割程度)説明できる
- ⑧環境修復技術(バイオレメディエーションなど)について、ほぼ正確に(6割程度)説明できる
- ⑨都市環境における物質循環と環境浄化について,工学的観点からほぼ正確に(6割程度)説明できる
- ⑩環境リスクを踏まえ、環境評価法と環境管理システムなどについて、 ほぼ正確に(6割程度)説明できる.

授業の進め方とアドバイス: 教科書のテーマを題材にして講義形式で授業を行う. 生態学, 環境工学などに関する話題が多岐にわたるので, 講義内容の復習を十分行なうこと.

教科書および参考書:環境生物工学(海野 肇・松村正利・藤江幸一ほか,講談社サイエンティフィク,2002,ISBN 4-06-139806-7)を教科書とする。より理解を深めるためには、参考書として、生き物の科学と環境の科学(河内俊英著,共立出版,2003)、環境保全工学(浮田・河原・福島共著、技報堂出版、1997)、環境生態学序説(松田著,共立出版、2000)などがある。

授業	護概要と予定:前期	教室外学習	ALのレベル
第	1回:社会活動と生態系 (循環型社会の現状と課題,環境システム, 社会技術)	我々が直面している環境・食料・エネルギー問題は人口問題に深く関係している。50年後の人口予測値(世界・日本)とその値に影響を及ぼす因子について調べる (http://www.census.gov/ipc/www/worldhis.htmlなど).	
第	2回:環境容量と自然浄化作用 (資源の利用と環境容量,ロジスティック モデル,自然浄化作用の評価)	生態学での定義、環境容量を支える意味として の資源とその種類、環境容量概念の適用例、地 球や地域環境問題の環境容量的理解について まとめる。	
第	3回:物質のマクロ的な循環 (水循環,エントロピー,炭素・窒素・硫 黄・リンの循環)	水循環および元素(炭素・窒素・硫黄・リンなど)の循環,エントロピーの概念をまとめる. これらについてリザーバーの種類,フラックス変動,環境に与える影響などを理解する.	С
第	4回:自然生態系のしくみ(1)第 4回:自 然生態系のしくみ(1) (生態系の概念・生態学の原則:有機物の 生産と分解,生態系の遷移)	生態生態系の概念を理解し,生態学の原則である有機物の生産と分解,生態系の遷移,生態効率と食物連鎖のピラミッドについて,基本的な演習を行う.	
第	5回:自然生態系のしくみ (2) (生態学の原則:生態系の多様性・安定性・	生態系の多様性・安定性について,生態学的地位(niche)やフィードバックシステムを理解し,	С

種間競争)	生物群集の分布と連続性の関係や、種間の共	
1221-47/74 4 7	生・寄生・競争・捕食などの関係、ゲーム理論	
	について、基本的な演習を行う.	
第 6回:化学生態学の基礎	ケミカルコミュニケーション物質の種類につ	
(植物間、植物と動物、動物間の化学的交	いて調べ、興味のある花色と昆虫の訪花性につ	
渉、アレロパシー、フェロモン、ケミカ	いて,色覚,花の香りの成分,摂餌行動の観点	
ルコミュニケーション物質)	から、関連性をまとめる.	
	水系生態系の構成とその自浄作用について理	
第 7回:社会活動と水環境の関わり	解し、揚水の自然汚濁と人為的な汚濁を評価す	
(水系生態系の特徴と役割,有機汚濁物質	る水質指標(BOD など)についてまとめる.	С
の微生物分解,活性汚泥微生物と食物連	また, 好気性菌や嫌気性菌を用いた汚水・汚泥	
鎖)	処理や高度処理について演習を行う.	
然 0 □ 成小加四 +分)	硝化・脱室反応による窒素除去, 生物学的脱リ	
第 8回:廃水処理技術と富栄養化対策	ン法などにより, 栄養塩 N.P を重要な資源とし	
(栄養塩 N,P の微生物処理,捕食・寄生な	て回収再利用する原理をまとめる. また, 生物	
ど異種生物間の相互作用を用いた汚濁浄	操作による水質改善 (バイオマニュピレーショ	
化)	ン) について理解する.	
第 9回:社会活動と大気環境の関わり	光合成細菌による CO2の固定, 根粒菌・藍藻に	
(CO2の放出と固定化,窒素の固定と	よる N2 固定, さらに, 揮発性有機化合物(VOC)	
放出)	や臭気物質の除去原理についてまとめる.	
第10回:社会活動と土壌環境の関わり	微生物によるセルロース・リグニンの分解とそ	
	のモデル化についてまとめる. また, その応用	
(土壌微生物生態系の特徴,木質系資源を 分解する微生物,生分解性プラスティッ	例としてコンポスト (compost) や生分解性プ	
方解する似生物, 生分解性ノノヘティック)	ラスティックの基本的な分解原理について理	
7)	解する.	
	生物機能を利用して環境修復するバイオレメ	
第11回:社会活動と汚染環境修復技術	ディエーションについて,原油・トリクロロエ	
(バイオレメディエーション, 微生物機能	チレン・PCB・ダイオキシン・重金属などの浄	С
と汚染修復、植物機能と汚染修復、最適	化原理をまとめる. さらに, 植物機能を利用し	C
修復手法)	たファイトレメディエーションについて理解	
	する.	
第12回:社会活動と物質・エネルギーの循環	バイオマスのエネルギーとしての価値やエネ	
(バイオマスを基盤とした物質循環プロセ	ルギー変換, バイオマスを基盤とした物質循環	С
ス,生物機能の活用)	プロセスについて基本的な演習を行う.	
第13回:生態系を利用する物質循環と環境浄化	食料生産と物質循環,地域生態系を利用した物	
(地域生態系の利用、都市環境と生物	質循環プロセス(総合バイオシステム IBS)の	
機能)	利用、都市環境における生物機能の活用(工学	
D/411=7	的技術の応用)についてまとめる.	
第14回:環境管理のための社会システム	農薬の使用,水道水の殺菌などについてリスク	
(持続可能な社会を支える各種主体の役	とベネフィット両方を合わせた環境リスクに	
割,環境リスクの管理)	ついて演習を行う.また、環境管理システムと	
	LCA, ISO14000s の関係をまとめる.	
期末試験	_	
第15回 まとめ		
カエロ門 よこの		

評価 (ルーブリック)

達成度	理想的な到達	標準的な到達	未到達
評価項目	レベルの目安	レベルの目安	レベルの目安
	(優)	(良)	(不可)
	環境容量を理解し,ロジステ	環境容量を理解し,ロジステ	環境容量,ロジスティックモ
1	ィックモデルなどについて,	ィックモデルなどについて,	デルなどの基本的な知識が
	正確に (8割程度) 説明でき	ほぼ正確に (6割程度) 説明	無い
	る	できる	
	マクロ的な物質循環 (C,N,P	マクロ的な物質循環 (C,N,P	マクロ的な物質循環(C,N,P
2	など) について, 正確に (8	など) について, ほぼ正確に	など) の基本的な知識が無い
	割程度)図示して説明できる	(6割程度) 図示して説明で	
		きる	

3	自然生態系の基本原則のい くつかについて,正確に(8 割程度)説明できる	自然生態系の基本原則のい くつかについて,ほぼ正確に	自然生態系の基本原則の基 本的な知識が無い
		(6割程度)説明できる	上上 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	複数の生物種、種間の競争・	複数の生物種、種間の競争・	複数の生物種、種間の競争・
	寄生・共生モデル、化学コミ	寄生・共生モデル、化学コミ	寄生・共生モデル、化学コミ
4	ュニケーションなどについて, 正確に(8割程度)説明	ュニケーションなどについ て,ほぼ正確に(6割程度)	ュニケーションなどの基本 的な知識が無い
	C, 正確に (8 前性及) 説明 できる	C, はは正確に (0 刮柱度) 説明できる	ロゾム大山戦ル·無V·
	できる 水環境 (栄養塩 N,P など) の	祝明できる 水環境 (栄養塩 N.P など) の	水環境 (栄養塩 N,P など) の
	水泉境(未食塩 N,P など)の 生物浄化機能について,正確	小塚児(木食塩 N,P など)の 生物浄化機能について,ほぼ	生物浄化機能の基本的な知
5	に(8割程度)説明できる	正確に(6割程度)説明でき	主物守化機能の基本的な知 識が無い
	に(6 前性及)説例できる	工作に (0 部注及) 配切 (3	iit // · · ·
	 大気環境(CO2,N2 など)の	大気環境(CO2,N2 など)の	大気環境(CO2,N2 など)の
	生物浄化機能について,正確	生物浄化機能について、ほぼ	生物浄化機能の基本的な知
6	に (8 割程度) 説明できる	正確に(6割程度)説明でき	識が無い
		る	
	土壌環境(コンポスト化な	土壌環境(コンポスト化な	土壌環境(コンポスト化な
(7)	ど)の生物浄化機能につい	ど)の生物浄化機能につい	ど) の生物浄化機能の基本的
	て,正確に(8割程度)説明	て,ほぼ正確に(6割程度)	な知識が無い
	できる	説明できる	
	環境修復技術(バイオレメデ	環境修復技術(バイオレメデ	環境修復技術(バイオレメデ
8	ィエーションなど) につい	ィエーションなど) につい	ィエーションなど) の基本的
	て,正確に(8割程度)説明	て、ほぼ正確に(6割程度)	な知識が無い
	できる	説明できる	
9	都市環境における物質循環	都市環境における物質循環	都市環境における物質循環
	と環境浄化について,工学的	と環境浄化について,工学的	と環境浄化の基本的な知識
	観点から正確に(8割程度)	観点からほぼ正確に(6割程	が無い
	説明できる	度)説明できる	
10	環境リスクを踏まえ,環境評	環境リスクを踏まえ,環境評	環境リスク,環境評価法と環
	価法と環境管理システムな	価法と環境管理システムな	境管理システムなどの基本
	どについて、正確に(8割程	どについて、ほぼ正確に (6	的な知識が無い
	度)説明できる.	割程度)説明できる.	