平成 29 年度 岐阜工業高等専門学校シラバ	バス				
教科目名 応用数学 A	担当教員	柴田欣秀			
学年学科 3年 電気情報工学科		後期	必修	1 単位	

学習·教育目標 (D-1)100%

授業の目標と期待される効果:

多くの工業的分野や他の応用数学に応用され、第4学年の応用数学でも学ぶ複素関数の微分・積分や確率・統計の基礎的事項を理解し、計算できることを目標とする. 特に、微分積分を含む数学は基礎知識として関連があり、微分積分などの応用事例としての理解が深まる事も期待できる.

- ①複素数の定義や性質による計算
- ②複素平面に関する理解と計算
- ③複素変数と複素関数に関する計算
- ④確率の定義や性質による計算
- ⑤確率分布に関する理解と計算
- ⑥特に2項分布に関する理解と計算

成績評価の方法:

中間試験 100 点+期末試験 100 点+課題等 50 点とし,総得点率 (%) によって成績評価を行なう. 課題等は,授業中の教室内演習の結果が大きく反映される.

達成度評価の基準:教科書の練習問題と同レベルの問題を試験で出題し、6割以上の正答レベルまで達していること.なお成績評価への重みは、①~⑥はほぼ同程度とする.

- ①複素数の基礎的な定義や性質を利用した計算問題をほぼ正確 (6割以上)に解くことができる.
- ②複素平面の概念を理解し、視覚的な説明とともに、関連する計算問題をほぼ正確(6割以上)に解くことができる.
- ③複素変数と複素関数に関する計算問題をほぼ正確(6 割以上)に解くことができる.
- ④確率の基礎的な定義や性質を利用した計算問題をほぼ正確(6 割以上)に解くことができる.
- ⑤確率変数と確率分布を理解し、視覚的な説明とともに、関連する 計算問題をほぼ正確(6割以上)に解くことができる.
- ⑥特に 2 項分布に関する計算問題がほぼ正確(6 割以上)に解くことができる.

授業の進め方とアドバイス:プリントを使用し,授業を進める.要点をメモし,各自プリントやノートを充実させ,理解度向上のために(例題等を参考に)演習問題を解くことが重要である.この演習と,理解度を確認するための課題等も評価対象となる.授業と演習を通じ,自分の数学の知識を確認しつつ,復習や予習の自宅学習が必須である.

教科書および参考書:適宜プリントを配布する.また,基礎解析学(改訂版)(矢野,石原・裳華房),新訂 確率統計(高遠ほか・大日本図書)を参考書として用いる.

授業の概要と予定:前期	ALのレベル			
第 1回:複素数(複素数の定義, 実部, 虚部, 相等, 四則演算, 共役複素数)	С			
第 2回:複素数(絶対値, 三角不等式, 図形)	С			
第 3回:複素数と複素平面(極形式)	С			
第 4回:複素数と複素平面(ド・モアブルの定理,n乗根)	С			
第 5回:複素数の数列(複素数列の級数,極限値)	С			
第 6回:複素関数の微分(複素関数の正則性, 導関数)	С			
第 7回:複素数・複素関数の復習	В			
第 8回:中間試験				
第 9回:確率(確率現象の説明,確率の定義,順列,組み合わせの計算法)	С			
第10回:確率(事象の性質,確率の性質・公理,加法定理)	С			
第11回:確率(条件付き確率,乗法定理,事象の独立)	С			
第12回:確率(復元抽出と非復元抽出,反復試行の確率,ベイズの定理)	С			
第13回:確率分布(離散分布,2項分布,平均値の計算法)	С			
第14回:確率分布(分散と標準偏差の計算法),確率・確率分布の復習	С			
期末試験				
第15回:複素数・複素関数,確率・確率分布の総まとめ				

評価 (ルーブリック)

達成度	理想的な到達	標準的な到達	未到達			
評価項目 レベルの目安		レベルの目安	レベルの目安			
	(優)	(良)	(不可)			
①	複素数の基礎的な定義や	複素数の基礎的な定義や性	複素数の基礎的な定義や性			
	性質を利用した計算問題	質を利用した計算問題をほ	質を利用した計算問題を解			
	を正確(8 割以上)に解く	ぼ正確(6割以上)に解くこと	くことができない.			
	ことができる.	ができる.				
2	複素平面の概念を理解し,	複素平面の概念を理解し,	複素平面の概念を理解し, 視			
	視覚的な説明とともに,	視覚的な説明とともに,関	覚的な説明とともに, 関連す			
	関連する計算問題を正確	連する計算問題をほぼ正確	る計算問題を解くことがで			
	(8 割以上)に解くことが	(6 割以上)に解くことができ	きない.			
	できる.	る.				
3	複素変数と複素関数に関	複素変数と複素関数に関す	複素変数と複素関数に関す			
	する計算問題を正確(8 割	る計算問題をほぼ正確(6 割	る計算問題を解くことがで			
	以上)に解くことができ	以上)に解くことができる.	きない.			
	る.					
4	確率の基礎的な定義や性	確率の基礎的な定義や性質	確率の基礎的な定義や性質			
	質を利用した計算問題を	を利用した計算問題をほぼ	を利用した計算問題を解く			
	正確(8 割以上)に解くこ	正確(6 割以上)に解くことが	ことができない.			
	とができる.	できる.				
(5)	確率変数と確率分布を理	確率変数と確率分布を理解	確率変数と確率分布を理解			
	解し、視覚的な説明とと	し、視覚的な説明とともに、	し, 視覚的な説明とともに,			
	もに,関連する計算問題	関連する計算問題をほぼ正	関連する計算問題を解くこ			
	を正確(8 割以上)に解く	確(6割以上)に解くことがで	とができるない.			
	ことができる.	きる.	2 <i>n</i> (2 3 3.)			
6	特に2項分布に関する計	特に 2 項分布に関する計算	特に2項分布に関する計算問			
	算問題が正確(8 割以上)	問題がほぼ正確(6 割以上)に	題が解くことができない.			
	に解くことができる.	解くことができる.				
	1 . /// (= = // , = = // .	/// · = C // · C W ·				