

Words and Diophantine Approximation

Izumi NAKASHIMA Professor M.S. Email : nakasima@gifu-nct.ac.jp Research Fields Analytic Number Theory

Keywords

word, Diophantine Approximation

۰.

Research Outline

Research on words

A sequence of letters is called a word. A word is relate to Diophantine approximation.

A number of subwords with length n is called complexity p(n). If a word is periodic then complexity is bounded. The Sturmian words is the non periodic words which have least complexity p(n)=n+1.

The Kolakoski sequence is a sequence which satisfies the condition that the sequence of its runlengths is equal to itself.

Kolakoski sequence {1,2}

The frequency of 1 in Kolakoski sequence $\{1,2\}$ is conjectured 0.5. And the complexity of Kolakoski

sequence {1,2} is conjectured $p(n) \sim \frac{\log 3}{\log(3/2)}$.

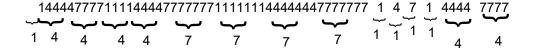
Kolaloski sequence $\{1,3\}$ is the word

1	333	111	333	31	3	13	33	111	333	
~			\sim						\sim	
1	3	3	3	1	1	1	3	3	3	

The frequency of 1 in Kolakoski sequence $\{1,3\}$ is a root of a equation

 $4x^{3}-14x^{2}+15x-4=0$

I prove the complexity of Kolakoski sequence $\{1,3\}$ p(n)=2n+2 for large n. I define a restricted complexity p_odd(n) and p_even(n), and satisfies p_odd(n)=p_even(n)=n+1 for Kolakoski sequence $\{1,3\}$. Kolakoski sequence $\{1,3\}$ is similar to Sturmian words.



This word is Kolakoski sequence $\{1,4,7\}$. The frequency of 1 is a root of cubic equation

 $36x^{3}-84x^{2}+60x-11=0$.